A Plan for the Development of an Integrated Common Diagnostics System

George Ludwig, Ph.D.

Diagnostic Systems Division

USAMRIID - Ft. Detrick

Program Framework

- Problem
- Requirement
- Solution

THE PROBLEM

(Medical Perspective)

Diagnostics and Patient Care: Goals

- Reduce/prevent mortality
- Reduce/prevent morbidity
- Maintain unit readiness

Impact of Diagnostics on Patient Care

- Immediate postexposure (up to 24 h)
 - very low concentration of agent
 - ✓ IMPACT

- √ low concentration of agent
- **✓** IMPACT
 - Critically ill
 - ✓ High concentration

Operational Scenario

USAMRIID

Diagnostic Selection Criteria

Speed

Classical Methods for Identifying Biological Agents

- Culture Isolation (1 30 days)
- Animal inoculation (2 30 days)
- Antigen detection (4 18 hours)
- Antibody detection (2 hr 10 days)

<u>Shipping - 24 -72 hrs!</u>

Diagnostic Selection Criteria

- Speed
- Sensitivity

Classical Methods for Identifying Biological Agents

- Culture Isolation
 - High
- Animal inoculation
 - High
- Antigen detection
 - Low to Moderate
- Antibody detection
 - High

Diagnostic Sensitivity Requirements

Agent	Infective Dose	Agent	Infective Dose
Anthrax	8,000 to 50,000 spores	Smallpox	10-100 organisms*
Brucellosis	10-100 organisms	VEE	10-100 organisms
Plague	100-500 organisms	Viral Hemorrhagic Fevers	1-10 organisms
Q-fever	1-10 organisms	Botulinum Toxins	~70 ng
Tularemia	10-50 organisms	Staph Enterotoxin B	~30 ng

Anthrax in Swabs

Operational Scenario

Operational Scenario

USAMRIID

Diagnostic Markers

- Agent
- Antigen
- Antibody
- Nucleic Acid
- Cytokines/Chemokines
- Hormones
- Host Gene Expression

Diagnostics Time Curve -- VEE

Symptoms

The Requirement (DoD Perspective)

- Simultaneous identification >= 8 agents
- Identify biological agents at relevant conc.
- Sensitivity >= 0.98
- □ Specificity >= 0.98
- Approved or exempted by the FDA
- Upgradeable equipment/assays
- Sample processing <= 20 min
- Total assay time <= 25 min
- Self-calibrating with failure alert

The Requirement (DoD Perspective)

- Protect and preserve samples
- Software/Communications compatibility
- Set up <= 30 minutes
- Visual and audible positive identification signal
- Operable using all army power systems
- Battery operated >= 12 hours
- Back-up power capable
- Man portable
- Day/Night Operations.
- Onboard data storage.

Comprehensive Integrated Diagnostic System

Automated Sample Processing

Immunodiagnostics

Nucleic Acid Detection

Integrated Identification and Diagnostic System

✓ Definitive biological agent diagnosis requires integrated identification technologies

Biomarkers

Specific virulence markers

Genus and species markers

Common pathogenic markers & antibiotic resistance

Host Response Markers

✓ Avoid Technological Surprise

Evolutionary Strategy

2002

Portable Rapid Nucleic Acid Analysis System

2003

Improved Immunodiagnostic System

2007

Comprehensive Integrated Diagnostic Systems

USAMRIID

Medical Diagnostics

Platforms

Reagents

Assays/Sample Processing

Standardization

Validation

USAMRIID

Specimen Processing Challenge

Medical specimens

- swabs
- whole blood and serum
- urine
- feces
- sputum
- lesion exudate
- tissues

Environmental samples

- high volume air sampler
- swabs
- water
- soil

✓ Each matrix may require a unique processing protocol

Integrated Cartridge System

Specimen Processing Options

USAMRIID

Tube and Paper Based Methods

Automated Systems

Manual Cartridge Systems

Gene Amplification and Detection Option

Four Cartridge
Integrated Nucleic Acid Analysis System
USAMRIID

Common Gene Amplification Chemistry

- Common gene amplification chemistry
- Assays for over 26 biological agents
- COTS technology
- Over 50 assays developed

Gene Amplification Reagents

- Pre-formulated
- Pre-dispensed
- Single-dose
- Ambient-temperature-stable
- Greater reproducibility

• Idaho Technologies

Lyophilized in

Leading Instrument Options

Smart Cycler™ XC

RAPID/LightCycler™

- Rugged and portable
- Rapid (25 to 40 mins after specimen processing)
- Sensitive
- Common fluorescent probe chemistry
- Different engineering and operation concepts USAMRIID

Device Comparisons

Characteristics	ABI 7700 Ô	SmartCycler Ô	R.A.P.I.D.S.
Optical			
Excitation	1 color	4 color	1 color
Optical			
Detection	4 color	4 color	2 color
Independent			
Thermocycling	no	yes	no
Reaction			
<u>Volume</u>	50 ul	100 ul	20 ul
Rapid			
Thermocycling	no	yes	yes
Low Power	no	yes	no
Average		-	
Analysis Time	2.5 to 3.0 h	20 to 40 min	20 to 40 min

Evaluation Trials

ECL Immunoassay

- High sensitivity
- Wide dynamic range
- 15 min assay
- Stable reagents

Electrochemiluminescence (ECL) Reaction First Generation Device - ORIGEN®

Vortexing Carousel

ECLM - Igen

- Modular design
- Conducive to portability
- Clinical device uses eight modules
 - 96 well plates
 - ease of maintenance

USAMKIID

Single Tube ECL Assay

ECL Assays

- SEB Toxin
- Ricin Toxin
- Bot A Toxin
- □ Plague F1 Antigen
- Anthrax PA
- VEE Virus
- Orthopox

- Near Future
 - Fielding
 - » TAML
 - » Multi-center trials
 - Miniaturization and optimization of next generation device

Magnetic Assay Reader

- Measures the amount of magnetic material in the analytical region
- Oscillating magnetic field used to excite paramagnetic particles
- Detector measures the local magnetic field

Hand Held Assay Strip

- Simple
- Multiple analyte testing possible
- 10-15 min test

Comprehensive Integrated Diagnostic System

Automated Sample Processing

Immunodiagnostics

Nucleic Acid Detection

Far Term Development

Chip Technology

Mass Spectrometry

Advanced Nucleic Acid Sequencing

Summary

- Emerging technologies will eventually allow for the development of light weight handheld devices
- Near term development is focused upon new methods of amplification of gene products and detection of immune complexes
- Far term development may take advantage of microchip, mass spectrometry, and other technologies with broad applications

